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Abstract

This paper presents a performance comparison be-
tween two popular Reinforcement Learning algo-
rithms: the Sarsa-Lambda algorithm and Watkin’s
Q-Lambda algorithm. The algorithms were imple-
mented on two classic reinforcement learning prob-
lems – the Pole Balancing problem and the Mountain
Car problem. Further work and improvements have
been suggested in the conclusion.

1 Introduction

It is necessary to know which algorithm to use for a
specific reinforcement learning problem. This study
aims to indicate which one is a better algorithm,
and under which parameters, for two types of prob-
lems. The mountain car problem is an example of an
episodic control task where things have to get worse
(moving away from the goal) before they can get bet-
ter. The pole balancing problem is an example of an
episodic control task where the agent tries to reach
the goal at all times.

This study is also a part of my course curriculum
at the Department of Computer Science, Texas Tech
University.

2 Theoretical Background

2.1 Reinforcement Learning

Reinforcement Learning is that branch of Artificial
Intelligence where the agent learns with experience,
and with experience only. No plans are given, there

are no explicitly defined constraints or facts. It is
a “computational approach to learning from interac-
tion”. The key feature of reinforcement learning is
that an active decision-making agent works towards
achieving some reward, which will be available only
upon reaching the goal. The agent is not told which
actions it should take to reach the goal, but instead
it discovers the best actions to take at different states
by learning from its mistakes. The agent monitors its
environment all times, because actions taken by the
agent may change the environment and hence affect
the actions available to the agent from the environ-
ment. The agent learns by assigning values to states
and actions associated with every state. When the
agent reaches a state that it has already learnt about,
it can exploit its knowledge of the state space to take
the best action. At times the agent takes random ac-
tions – this is called exploration. While exploring the
agent learns about those regions of the state space
that it would otherwise ignore if it only followed the
best actions. By keeping a good balance between
eploitation and exploration, the agent is able to learn
the optimal policy to reach the goal. In all reinforce-
ment learning problems, the agent uses its experience
to improve its performance over time. For a detailed
study of Reinforcement Learning please refer to [1].

The Sarsa algorithm (short for state, action, re-
ward, state, action) is an on-policy temporal differ-
ence control algorithm. It is an on-policy algorithm
in the sense that it learns the action-value function for
the policy which is being followed by the algorithm
to make the transition from a state-action pair to the
next state-action pair. It learns an action-value func-
tion for a policy π. This algorithm considers tran-

1



sitions from state-action pair to state-action pair and
learns the value of visited state-action pairs. The al-
gorithm coninuously estimates Qπ for a behaviour
policy π, and at the same time changes π toward
greediness with respect to the learned action-value
function Qπ .

The Q-learning algorithm is an off-policy tem-
poral difference control algorithm. This algorithm
learns the optimal policy while following any other
(non-greedy, e.g. ε-greedy, etc.) policy. The learned
action-value function Q directly approximates Q*.
The policy being followed changes as the action-
value function is learnt and more accurate values for
every state-action pair are generated.

When the Sarsa and Q-learning algorithm are aug-
mented with Eligibility Traces and TD(λ) methods,
then they are known as Sarsa(λ) and Q(λ) algorithms
respectively. The Q-learning algorithm was devel-
oped by Watkins in 1989, hence the name, Watkin’s
Q(λ). The λ in both the algorithms refers to the n-
step backups for Qπ. These are still temporal differ-
ence learning methods because they change an ear-
lier estimate based on how it differs from a later es-
timate. The TD(λ) methods differ from the basic TD
method because the backup is made after n steps and
not after every one step. The value of n is given by
the value of λ. The practical way of implementing
this kind of method is by using Eligibility Traces.

An eligibility trace is associated with every state-
action pair in the form of an additional memory vari-
able. The eligibility trace for every state-action pair
decays at every step by γλ, where γ is the discount
rate. The eligibility trace for the state visited on that
step is changed depending on the kind of eligibility
traces being implemented. Ther are two ways to im-
plement eligibility traces, Accumulating Traces and
Replacing Traces. If using Accumulating Traces, the
eligibility trace for the visited state-action pair is in-
cremented by 1. If Replacing Traces are used, the
eligibility Trace for the visited state is set to 1. In all
their essence, eligibility traces keep a record of state-
action pairs which have recently been visited, and the
degree for which each state-action pair is eligible for
undergoing learning changes.
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Figure 1: Sarsa(λ) Backup Diagram

2.2 Sarsa(λ)

When eligibility traces are added to the Sarsa algo-
rithm it becomes the Sarsa(λ) algorithm. The basic
algorithm is similar to the Sarsa algorithm, except
that backups are carried out over n-steps and not just
over one step. An eligibility trace is kept for every
state-action pair. The update rule for this algorithm
is:

Qt � 1
�
s � a �� Qt

�
s � a ��
 α δt et

�
s � a � for all s, a

where

δt � rt � 1 
 γ Qt
�
st � 1 � at � 1 ��� Qt

�
st � at �

and

et
�
s � a ����� 1 i f s � st and a � at

γδet 	 1
�
s � a � otherwise

The backup diagram for the Sarsa(λ) algorithm is
shown in Figure 1.

The Sarsa(λ) algorithm is shown in Figure 2. This
algorithm uses replacing traces. The algorithm runs
for a large number of episodes until the action-value
function converges to a reasonably accurate value.
At every step it chooses an action at � 1 for the state
st � 1 that is the next state. This decision is made
based on the policy that is being followed by the al-
gorithm. Then it calculates δt based on the above
equation. Depending on the kind of traces being
used, the value of the eligibility trace for the cur-
rent state-action pair e

�
st � at � is calculated. In the
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Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s,a
Repeat(for each episode)

Initialize s,a
Repeat(for each step of epsiode)

Take action a, observe r, s’
Choose a’ from s’ using the behaviour policy
δ � r 
 γQ(s’,a’)-Q(s,a)
e(s,a) � 1
For all s,a:

Q(s,a) � Q(s,a) +αδe(s,a)
e(s,a) � γλe(s,a)

s � s’; a � a’
until s is terminal

Figure 2: Tabular Sarsa(λ)

next step the action-value for every state-action pair
is calculated using the above equation. Also, the el-
igibility trace for every state-action pair is decayed
by γλ. This process continues iteratively for every
episode until a terminal state is encountered.

2.3 Watkin’s Q(λ)

The Q(λ) algorithm is similar to the Q-learning algo-
rithm except that it uses eligibility traces and learn-
ing for an episode stops at the first non-greedy action
taken. Watkin’s Q(λ) is an off-policy method. As
long as the policy being followed selects greedy ac-
tions the algorithm keeps learning the action-value
function for the greedy policy. But when an ex-
ploratory action is selected by the behaviour policy,
the eligibility traces for all state-action pairs are set to
zero, hence learning stops for that episode. If at � n is
the first exploratory action, then the longest backup
is toward

rt � 1 
 γrt � 2 
������ 
 γn 	 1rt � n 
 γn maxaQt
�
st � n � a �

The backup diagram for this algorithm is shown
in Figure 3. The eligibility traces are updated in two
steps. If an exploratory action was taken, they are
set to zero for all state-action pairs. Otherwise the
eligibility traces for all state-action pairs are decayed
by γλ. In the second step, the eligibility trace value
for the current state-action pair is either incremented
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Figure 3: Watkin’s Q(λ) Backup Diagram

by 1 in the case of accumulating traces or set to 1 in
the case of replacing traces.

et
�
s � a ��� Isst � Iaat 
 � 1 i f Qt 	 1

�
st � at ��� maxaQt 	 1

�
st � a � ;

0 otherwise

The action-value function is defined as

Qt � 1
�
s � a �� Qt

�
s � a ��
 α δt et

�
s � a � ,

where

δt � rt � 1 
 γ maxa � Qt
�
st � 1 � a � ��� Qt

�
st � at �

The complete algorithm is shown in Figure 4.
The algorithm is conceptually the same as

Sarsa(λ), but it updates the action-value function us-
ing the value of the greedy action at the current state.

3 Implementation

The algorithms were implemented on the Pole Bal-
ancing and Mountain Car problems. The code is
written in C++. The code was compiled using ver-
sion 3.2 of the g++ compiler. A makefile is included
with the code. The code has been tried on RedHat
Linux 8 and on Sun Machines running Solaris 9. It
works comfortably on both, but takes longer to con-
verge on the Sun machines.
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Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s,a
Repeat(for each episode)

Initialize s,a
Repeat(for each step of epsiode)

Take action a, observe r, s’
Choose a’ from s’ using policy Q(ε-greedy)
a

�
� arg maxb Q(s’,b)

(if a’ ties for max, then a
�
� a’)

δ � γQ(s’,a
�
)-Q(s,a)

e(s,a) � 1
For all s,a:

Q(s,a) � Q(s,a) +αδe(s,a)
if a’=a

�
, then e(s,a) � γλe(s,a)
else e(s,a) � 0

s � s’; a � a’
until s is terminal

Figure 4: Tabular Watkin’s Q(λ) Algorithm

Figure 5: Pole-Balancing Problem

3.1 Pole Balancing Problem

The pole balancing problem is a classic problem of
reinforcement learning. The basic idea is to balance
a pole which is attached to a hinge on a movable cart.
Forces are applied to the cart, which can only move
along a 2 dimensional track, to prevent the pole from
falling over. A failure occurs if the pole falls past a
given angle from vertical. If the cart reaches the end
of the track, that also accounts as a failure. The pole
is reset to vertical after each failure. The implemen-
tation treats the problem as an episodic task, without
discounting. The episode terminates when a failure
occurs. The return is maximized by keeping the pole
balanced for as long as possible. A graphical view is
shown in Figure 5.

The entire state space is represented as a combi-
nation of four variables, x � ẋ � θ � θ̇. There are two
actions: apply force to the left of the cart, and apply
force to the right of the cart. Eligibility traces are
associated with every state-action pair. The action-
value function Q is maintained as a two dimensional
array which maps to every state-action pair. The Q
function and the eligibility traces are thus defined in
the program as such:

Q
�
state � �

action � and ET
�
state � �

action � .
The program starts out with an ε value of 0 � 99999

for the first one hundred episodes. After that the
epsilon value is decayed every hundred episodes by
multiplying it with itself. The pseudo-code for this
is:

if (ε � 0)
if (episode mod 100 equals 0)

ε � ε � ε

The state space is divided into regions. It would
be computationally impossible to generate a single
state for every possible combination x � ẋ � θ � θ̇. To
facilitate computation, the range for every variable is
divided into 15 equal regions. Every value for every
parameter is assigned an index based on the corre-
sponding region it falls in. The four indexes are then
combined to map to a single state. By this method
there are 15 � 15 � 15 � 15 � 50 � 625 unique states,
which is a computationally managable number. This
mapping is carried out by the getState

�
x � ẋ � θ � θ̇ �

function. This function takes in the values of the
variables as arguments. It returns a unique number
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Figure 6: Mountain-Car Problem

which is the state. This function is represented math-
ematically as,

xindex � �
int � ���� ceil

�
minx 
�� x �

xdiv � ����
where,

xrange � minx � maxx,

xdiv � xrange
15

for the value of x. The values of
ẋindex � θindex and θ̇ are calculated similarily.
Finally the stateindex is calculated by a simple
polynomial function:

stateindex � �
int � �

153 � xindex 
 152 � θindex
 15 � ẋindex 
 θ̇index �
The egreedy action is decided using the function

eGreedy
�
Val1 � Val2 � ε � . This function returns the

action number to be taken. Val1 and Val2 are action-
values for the state at which the decision is to be
taken. To take a greedy action a value of 0.0 for ε
is passed as an argument.

The code was written for both Sarsa(λ) and Q(λ)
algorithms. Both the implementations use Replacing
Traces to update the eligibility trace.

For both the algorithms the iteration only ends if
the action-value function converges to fixed values.
This was deduced by running the algorithms until
the number of steps taken remains a constant for 100
consecutive episodes. This is the converging condi-
tion for the algorithms.

3.2 Mountain Car Problem

The Mountain Car problem is another classic prob-
lem in reinforcement learning. It involves driving an
underpowered car up a steep mountain road. How-
ever, the car’s engine is not strong enough to make
the car accelerate up the steep slope. The car must
back up onto an opposite slope on the left. Then the
car must build up enough intertia to carry itself up to
the goal. By alternatingly moving forward and back-
ward, repeatedly, between the two slopes the car can
eventually build up enough inertia to reach the top of
the steep hill. The idea behind this experiment is to
make the car learn how to reach its goal while min-
imizing the number of oscillations between the two
slopes. The basic idea is shown in Figure 6.

The action-value function for the state-action pairs
is again a two dimensional array represented as
Q

�
state � �

action � . There is an eligibility trace as-
sociated with every state-action pair represented as
ET

�
state � �

action � .
The state is a function of two parameters: the po-

sition of the car and the velocity of the car. Like the
Pole-balancing problem, here also the state space is
divided into equal regions for reasons of computa-
tional feasibility. However, the state space here is
divided into 30 regions and not 15 regions for each
parameter. This makes the state space more accu-
rate towards the mapping to a single unique state.
There are 30 � 30 � 900 unique states. The map-
ping from different values of the parameters to a
single unique state is carried out by the function
getState

�
pos � vel � . This function returns a unique

value for the state depending on the values of pos and
vel. This function works similarily to the getState

� �
function used in the pole balancing problem. First
the posindex and the velindex are calculated using
the equation:

posindex � �
int � ���� ceil

�
POSRANGE

�
0 � 
�� pos �

posdiv � ����
where

posrange � POSRANGE
�
1 � � POSRANGE

�
0 �

and
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posdiv � posrange
30 .

velindex is calculated similarily. Finally
stateindex is calculated using the equation:

stateindex � �
int � �

30 � posindex 
 velindex �
The egreedy action is decided using the function

eGreedy
�
Q � state � ε � . This function returns the action

number to be taken. Q is the action-value function
and state is the state for which the decision is to be
taken. To take a greedy action a value of 0.0 for ε is
passed as an argument.

The code was written for both Sarsa(λ) and Q(λ)
algorithms. Both the implementations use Replacing
Traces to update the eligibility trace.

For both the algorithms the iteration only ends if
the action-value function converges to fixed values.
This was deduced by running the algorithms until
the number of steps taken remains a constant for 100
consecutive episodes. This is the converging condi-
tion for the algorithms.

4 Results

The results have been averaged over 20 episodes to
get the resulting graphs. Starting from a value of
0.99999, ε was decayed every 100 episodes. Other
values are: γ � 1 and α � 0 � 1. Watkin’s Q(λ) al-
gorithm was observed to be much more stable for the
Mountain Car Problem.

α and γ were kept constant for the experiment. The
different values of λ that were used are: 0.0, 0.2, 0.5,
0.7, 0.9 and 1.0. All graphs are based on these values
and are between Number of Steps Taken on the Y-
axis and The Number of Episodes on the X-axis.

4.1 Pole Balancing Problem

The results for the Pole Balancing problem are
skewed because the program took too long to con-
verge. It had not yet converged for some values of λ
at the time of writing of this document.

Modifications to the code could be possible solu-
tions to this problem.

4.2 Mountain Car Problem

The results for the Mountain Car problem are very
precise and informative. We must remember that the

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 0  200  400  600  800  1000  1200

"POLE-L0.0.sarsa"
"POLE-L0.0.q"

Figure 7: Pole Balancing, λ � 0 � 0
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Figure 8: Pole Balancing, λ � 0 � 2
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Figure 9: Pole Balancing, λ � 0 � 5
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Figure 10: Pole Balancing, λ � 0 � 7
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 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 0  200  400  600  800  1000  1200

"POLE-L1.0.sarsa"
"POLE-L1.0.q"

Figure 12: Pole Balancing, λ � 1 � 0

mountain car problem is a unique type of problem
because the agent has to move away from the goal
to get to it. All results have been averaged over 20
episodes. The maximum number of steps was 5000.

If we look at Figure 13 Sarsa(λ) converges ear-
lier than Q(λ) at episode 2250, whereas Q(λ) con-
verges at episode 2850. However, Q(λ) converges
to a lower value, and hence has learnt better than
Sarsa(λ). Comparing Figures 13, 14 15, we ob-
serve a trend in the way the resulta are obtained. The
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Figure 13: Mountain Car, λ � 0 � 0
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Figure 14: Mountain Car, λ � 0 � 2
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Figure 15: Mountain Car, λ � 0 � 5
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Figure 16: Mountain Car, λ � 0 � 7
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Figure 17: Mountain Car, λ � 0 � 9
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Figure 18: Mountain Car, λ � 1 � 0

Q(λ) algorithm always converges to a value lower
than Sarsa(λ) for the same value of λ. However,
Sarsa(λ) always converges earlier than Q(λ). As λ in-
creases both the algorithms converge to a lower value
than what they had with a lower λ. However, both the
algorithms now take longer to converge.

Unfortunately, the programs for Sarsa(λ) for λ =
0.7 and λ = 0.9 had not converged at the time of
writing of this paper. But they had been observed to
have converged at an earlier time during the experi-
ment.

Interesting results were observed for Sarsa(λ) with
λ = 1.0. The relevant graph is shown in Figure 18.
This is a Monte Carlo implementation. The value
function converges to the worst possible value. It
does not seem to be affected by any changes in ε.

5 Conclusion

Improvements to the algorithms are desired. Further
experiments could include decaying the value of α
during the course of a run. Furthermore, I believe
that the value of α used in these experiments was too
high. Also, the decay of ε could be modified to get
better results.
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