
Implementation of Obstacle Avoidance and HIMM Mapping
on Nomadic Robot Simulator

Karan M. Gupta
Department of Computer Science

Texas Tech University
gupta@cs.ttu.edu

Abstract

This is a report on the Final Project for the Graduate
AI Robotics Class, Fall 2003. The project has been
subdivided into four parts, of which two were imple-
mented:

1. Obstacle Avoidance for a Wandering Robot

2. Mapping of the World by a Wandering Robot

The project is implemented on the Nomadic Tech-
nologies Super Scout II Robot Simulator. The pro-
gramming language used is C++. The compiler used
is g++ (GCC) version 3.2.2. The project has been
compiled and tested on a RedHat Linux machine suc-
cessfully.

1 Introduction: The Objective

The objective of this project is to implement Obstacle
Avoidance and Mapping for a mobile robot. The im-
plementation is on a robot simulator. As a minimum
the robot is required to wander around its environ-
ment without colliding with any obtacles that may be
present in the environment. When the robot is able
to carry out this task successfully, another behavior
is added to it: mapping. So the second part boils
down to mapping the environment while wandering
in it, staying away from all obstacles. This study is
a part of my course curriculum at the Department of
Computer Science, Texas Tech University. The con-
cepts used in this project are explained in the course
textbook [4].

2 Implementation

The project has been implemented on a Nomadic
Technologies Super Scout II Robot Simulator. The
simulator presents a graphic environment, and an
API which is usable in C or C++. The code for this
project has been written using C++.

The implementation makes the use of three main
behaviors:

1. A Wander behavior

2. An Avoid behavior

3. A Mapping behavior

The map is stored in an Occupancy Grid, and is gen-
erated by using the HIMM sonar sensor model. The
addition of a signal handler allows the program to
exit cleanly. Before exiting, the program creates a
pgm £le (map.pgm) and writes the data in the occu-
pancy grid to this £le, thereby creating a copy of the
learned map.

2.1 The Wander Behavior

The wander behavior is made up of two behav-
iors, move straight (pr) and turn little. The
wander behavior is carried out at all times, how-
ever, if there is an obstacle in front of the robot,
then the wander behavior is subsumed by the avoid
(turn away) behavior. While all these behaviors
are going on, the program keeps refreshing the state
of the robot to re¤ect the actions of the commands
on the screen simultaneously.

A certain amount of randomness has been in-
troduced into the program. The wander behavior

1



while(1)
random(distance)
pr(distance, distance)
while(robot moving)

getstates()
random(turn or noturn)
if (turn)

random(direction)
turn little(direction)

Figure 1: The Wander Behavior

chooses a random distance to move, and at times,
chooses a random direction to turn. This is imple-
mented by the turn little function. The proba-
bility for choosing to turn is 0.5. The algorithm for
the wander behavior is shown in Figure 1.

2.2 Obstacle Avoidance

The Obstacle Avoidance behavior keeps the robot
safe by not allowing it to bump into objects in the
environment. This behavior is implemented by two
functions: land ahead and turn. This behavior only
uses the sensors at the front (numbered 0 - 2 and 13
- 15). While wandering the sensors keep looking a
watch out for proximity to obstacles. When an obsta-
cle is closer than a certain threshold, the turn behav-
ior completely inhibits Wander and causes the robot
to keep turning until the robot is no longer facing the
obstacle. Then the robot resumes wandering. The
direction in which the robot turns (clockwise or anti-
clockwise) is chosen at random with both having an
equal probability of being chosen. The algorithm for
the Avoid Behavior is shown in Figure 2.

while(1)
while(not(land ahead))

Wander
random(direction)
turn(while(land ahead))

Figure 2: The Avoid Behavior

2.3 Mapping

The mapping function is called by the wander be-
havior. So, wandering and map-making go hand-in-
hand. As the robot moves around in its environment
it keeps storing the sonar readings that bounce off
nearby obstacles. An Occupancy Grid structure is
used to store the generated map. In this technique,
a 2D cartesian grid is superimposed on the world
space. If there is an obstacle in the area covered by
a grid element, that element is marked as being oc-
cupied. This implementation uses the Histogrammic
In-Motion Mapping [1] (HIMM) algorithm to gener-
ate the map.

x0,y0

phi

th

r

r.sin(th+phi)

r.cos(th+phi)

x1,y1

s0 line

0,0

s1 line

robot

Figure 3: Calculating Index of an Element

In the HIMM sonar sensor model only the ele-
ments of the occupancy grid that fall directly under
the acoustic axis of the sonar are updated. The un-
certainty score is expressed as an integer in the range
0 to 15. Like other sonar sensor models, HIMM as-
sumes that the sonar’s range reading is coming from
an element on its acoustic axis. Upon receiving a
sonar range reading the algorithm updates all the
elements directly under the acoustic axis as being
empty, and updates the element at the sonar read-
ing as being occupied. A Growth Rate Operator is
applied as an extra step everytime an element is up-
dated with an occupied reading. The Growth Rate

2



forall sensors
getstates()
x0, y0 = co-ords of robot
φ = angle of sonar to sonar0

θ = angle of sonar0 to horizontal
r = range reading from the sonar
x1 = x0 + r * cos(φ + θ)
y1 = y0 + r * sin(φ + θ)
UseBresenham’s Algo find
all values xb, yb from
x0, y0 to x1-1, y1-1

forall xb, yb

grid[xb][yb] = empty
If r < Range Threshold

grid[x1][y1] = occupied
Apply W, the GRO mask

Figure 4: The Mapping Behavior

Operator uses a mask, W, to extract the occupancy
reading of the neighbouring elements, of the one be-
ing updated, and uses that information to better judge
the occupancy of the element of interest.

To perform the above steps, the robot needs to
know which element of the occupancy grid the sonar
reading is coming from. This is done by applying
some trigonometry to the problem. The diagram for
the method used is in Figure 3. A standard geomet-
rical formula [3] is being used to calculate the grid
index of the element where the obstacle is at. By
looking at the £gure we see that:

x1 = x0 + rcos(θ+φ)
y1 = y0 + rsin(θ+φ)
Since the value of x1 and y1 is now known, we can

apply Bresenham’s Line Drawing Algorithm [5] to
£nd out the grid index of all elements that are on the
acoustic axis of the sonar. All the elements but one
on the acoustic axis are thus updated as being empty
and the element at x1 and y1 is marked as being oc-
cupied. The complete Mapping Behavior algorithm
is shown in Figure 4.

If the program is run for a suf£cent amount of
time, depending in the size of the environment, a map
can now be generated. This map is written to a pgm
£le upon exit. If the value of an in the occupancy
grid is more than a certain threshold it is marked as

being occupied (black), otherwise its marked as be-
ing empty (white).

3 Results

The wander and obstacle avoidance were tested in
a number of environments and they work correctly.
However, the Mapping procedure is not working as
desired. It was noticed that the map that the robot
makes is of its own path while wandering around the
world. This path is slightly shifted with repect to
the actual path the robot has taken. This leads me
to believe that the mathematical equation for getting
the values of x1 and y1 are incomplete or incorrect.
However, upon looking at the £gure the given math-
ematical formulae would be the most logical way of
getting the values for x1 and y1.

4 Conclusion

Currently this implementation is limited by the size
of the array used to store the occupancy grid. This
limits the size of the map which this implementation
can work on. Dynamically expanding occupancy
grids have been explored by Bharani [2] which seek
to remove dependency on an array for representing
an occupancy grid. This can allow a working im-
plementation to store any map, only limited by the
robot’s memory. On the other hand, if a very large
array is being used to store the occupancy grid, but
the map is a small one, a large amount of memory
is being wasted. Dynamically expanding occupancy
grids tackle both these issues.

Also, the project can be improved to use an exist-
ing map. This way the robot can repair or improve
upon the map, and as a side-effect we will also be
able to introduc redundancy in the implementation.

5 Acknowledgements

I would like to thank Dr. Larry Pyeatt for providing
very useful and sometimes, much needed, guidance
all throughout this course.

3



References

[1] J. Borenstein and Y. Koren. His-
togrammic in-motion mapping for
mobile robot obstacle avoidance.
IEEE Journal of Robotics and Automation,
7(4):535 – 539, 1991.

[2] Bharani K. Ellore. Dynamically expanding oc-
cupancy grids. Master’s thesis, Texas Tech
University, Department of Computer Science,
November 2002.

[3] M. L. Khanna and J. N. Sharma. I.I.T. Mathemat-
ics, chapter 18, page 1059. J.P.N. Publications,
Meerut, U.P. India, hundred thirty £rst edition,
2002-2003.

[4] Robin R. Murphy. Introduction to AI Robotics.
The MIT Press, Cambridge, Massachusetts,
England, 2000.

[5] Wikipedia. http://en.wikipedia.org/wiki/bresen-
ham’s line algorithm c code. World Wide Web.

4


