
AI Robotics
Project 1

Demonstration of
Time-based and Dead Reckoning

Navigation Techniques

Karan M. Gupta
gupta@cs.ttu.edu

Rajat Goyal
goyal@cs.ttu.edu

Abstract

This report discusses the implementation of Dead
Reckoning and Time-based techniques for au-
tonomous robot navigation. It includes the various
design issues encountered at different phases of this
project. The project was implemented using Lego
MindStorms Robotics Invention System 2.0 and the
Not Quite C progamming language construct.

1 Introduction

When designing a robot it is necessary to know about
the different techniques that can be used to navigate
the robot. Here we explore two basic methods of
robot navigation:

Dead Reckoning Prior to the development of ce-
lestial navigation, sailors navigated by ”deduced” (or
”dead”) reckoning. In Dead Reckoning, the naviga-
tor finds his position by measuring the course and
distance he has travelled from some known point.
Starting from a known point the navigator measures
out his course and distance from that point.

Similar to the odometer in a car, estimating a
robot’s position is accomplished by summing its in-
cremental movements relative to a starting point.

In order for this method to work, the navigator
needs a way to measure his course, and a way to
measure the distance. This can be implemented in
robotics by a variety of encoders like, mechanical
shaft encoder, light sensing encoder, visual input,
etc.

Time-based Navigation Dead Reckoning uses the
distance as a measure for navigation. An alternative
to this method is measuring the time the robot has
travelled. The displacement of time, relative to a pre
determined distance the robot can travel under vari-
ous conditions in unit time, will give the exact loca-
tion. This is Time-based Navigation.

2 Implementation

This project was implemented on a Lego Mind-
Storms Robotics Invention System 2.0 kit. It was
running the RCX 2.0 firmware. The Not Quite C
(NQC) programming language was used to imple-
ment the Time-based and Dead Reckoning naviga-
tion algorithms. The project was implemented on the
Windows XP platform with the BricX NQC Devel-
opment Environment.

2.1 Construction

The robot was designed bearing in mind the job that
is required for it to do, i.e. follow a particular pre-
defined path. The robot needed to go in a straight
line. It was required that it make several, moderately
accurate, 90 degree turns. For such a task we decided
to develop a robot that had a simple but effective de-
sign. The most important of element of our design is
symmetry: every part on the robot’s body is attached
as a pair. For every part on a side of the robot, there
is another similar part on the opposite side.

The key components of the robot are:

1



� 1 RCX 2.0

� 2 9V Motors

� 2 Mid-size wide wheels

� 1 Mid-size wheel rim

� 2 Touch sensors

� Several gears

The main parts in the body of the robot are the two
motors. These two motors form the mid-section of
the robot and give width to the robot’s body. These
two motors are joined back-to-back and rest upon
long beams that extend to the length of the robot’s
body. All of the other body parts are built upon this
basic structure. The robot implements the mecha-
nism of a front-wheel driven car. Two mid-size wide-
body wheels run by the power given by the motors.
Each motor runs one wheel only. The wheels are
wide-bodied and were selected primarily to curtail
the drift that could cause the robot to steer away
from its defined straight line path. The wheels are
connected to the motors by gears. Both the front
wheels have a independent axle that runs from the
wheel to the center of the body of the robot. Since
the axles are free to rotate, there will also be some
lateral movement of the axles, and not just a rotatory
motion. This could cause some errors in the steering.
If both the wheels are not looking at the exact (well,
almost) same view ahead, one of them is likely to
pull the robot away from a straight-line path. There-
fore, the construction is such that each axle passes
through two beams on the body. This minimizes the
lateral movement of the axles keeping the wheels as
much in synchronicity as possible with these parts.

Each motor has an eight-tooth small gear on its
shaft. This passes the motor’s motion to a crown
gear, which rotates on a free axle, below the mo-
tor. The crown gear serves two important functions.
Firstly, it passes the power from the motor to the
wheel. Secondly, it passes the motion to another gear
combination which drives an egg-shaped part. This
is the bump-sensor activator. The combination of this
activator and a touch sensor serves the purpose of a
shaft encoder, counting the rotations of the wheel.
The gear combination that drives it has the ratio 3:1
thereby giving the shaft encoder a high refresh rate.

The shaft encoder is used only for the Dead Reckon-
ing navigation method.

The mid-size wheel rim is the rear-wheel of the
robot. It is attached to the body of the robot by a long
freely rotatable axle, that passes through two beams.
We have added a few bricks and plates to the body
to make it stronger. The RCX is perched right on top
of the robot allowing an easy view of the LCD panel
and access to the buttons. The weight of the RCX
lowers the centre of gravity of the robot, keeping it
stable.

This construction gives us a reasonably straight-
moving robot. Since, the rubber has been removed
from the rear-wheel, excess friction between it and
the floor due to the swaying of the body during turns
has also been minimized.

2.2 Dead Reckoning

The hardware design consists of 2 bump-sensor acti-
vators attached to the axle. They are used to nudge
the Touch Sensor whenever the wheel is turning.
The Touch Sensor sends a message to the RCX code
whenever it is activated (depressed or released). This
system intuitively gives rise to a notion of an event
driven mechanism. Every activation of the Touch
Sensor can be treated as an event. The NQC lan-
guage provides for a very flexible event handling sys-
tem. There are 2 customizable events which are used,
one for each sensor. MYEVENT1 plugs into SEN-
SOR1 for ”listening” to events on Motor A and sim-
ilarly MYEVENT2 plugs into SENSOR3 for Motor
C. The power settings for the motors for both, going
forward and turning, were arrived at after extensive
calibration.

The forward function uses Motor A to determine
the distance travelled.(For purposes of calibration,
the bump-sensor activator has to be aligned to be
just on top of the Touch Sensor when starting for
the first time). The distance to be travelled is passed
to the function as a parameter. Everytime the event
(MYEVENT1) is triggered the value of counter1 is
incremented by 1. The value of counter1 is checked
against a pre-determined value (number of clicks
gained in 1 feet) multiplied by the distance to be trav-
elled. Again, the number of ”clicks” of Touch Sensor
that the robot travels in one feet was determined after
calibration. The robot is made to come to a complete

2



halt (motor is switched ”off” as opposed to coast-
ing) after counter1 becomes equal to the designated
value.

The turn function works in a similar way. The di-
rection in which to turn (left/right) is passed as a pa-
rameter to the turn function. The number of clicks
to be counted were calibrated against the motor that
would turn the greater distance. (For example, while
turning right, Motor C would travel the greater dis-
tance). The direction of both the motors is reversed
so that the robot makes the turn taking its center
as the turning pivot. The motor that is turning the
greater distance gets more power than the other one.
The robot is made to come to a complete halt after
the turn maneuver has been completed.

2.3 Time-based Navigation

The design of the program is pretty simple for time-
based navigation. The time taken to travel 1 foot was
calibrated and hard coded. The power settings for
both the motors were once again determined by cali-
bration.

The distance to be travelled is passsed to the
forward function as a parameter. The motors are
switched on for the time period equal to the time re-
quired to travel 1 foot multiplied by the distance to
be travelled. Both the motors are switched off after
the robot has completed the maneuver.

The turn function takes the direction in which to
turn as a parameter. The time taken to turn 90 de-
grees, and the power settings for each motor were
calibrated and hard coded. The direction of both
the motors is reversed so that the robot makes the
turn taking its center as the turning pivot. The motor
that is turning the greater distance gets more power
than the other one. The robot is made to come to a
complete halt after the turn maneuver has been com-
pleted.

In both the programs the robot is made to wait for
a period of 200ms after the completion of every ma-
neuver.

3 Design Issues

As with any project, there were several bumps along
the way that we had to face. However, we managed

to solve most of the problems we were having, in the
time that was given. Here’s a short description of the
route we took to reach the current design.

Being overly ambitious in the beginning as well
as being armed with the knowledge that wheels tend
to slip, we decided to make a humanoid robot. Our
robot was going to have legs and arms and knees and
a pelvis, and it was going to walk. So we started by
drawing out as much of the design as we could on
a board and then set about to implement the design.
The first lesson learnt was: Things are not as easy as
they seem. No matter how much we tried, we were
unable to copy the action of the pelvis in walking. It
seemed as though we needed a third motor. So, that
idea was abandoned due to lack of resources.

The next design was a two-wheeler. This was a
very small robot, devoid of any bricks except the
RCX and two motors. It was extremely light and the
wheels were directly conncted to the motor’s shafts
which in turn were directly attached to the RCX. It
ran beautifully, however, there was no control over
the direction. That was when we realised that having
at least one more wheel, or some sort of rear-rest is
absolutely necessary.

Knowing that it was going to be difficult to make
accurate turns (we did not have a robot then which
ran straight), we decided on a holomonic architec-
ture. The robot was to be made up of two bodies: a
lower body which had the wheels and a motor which
was responsible for giving forward motion to the
wheels. There was a differential gear which helped
keep both the wheels move by the same amount.
There was another big part which rotated freely over
the lower part which had another motor for rotating
the wheels-base below it. The two bodies were con-
nected by a shaft on which both the bodies could ro-
tate freely. The RCX was placed on the higher set to
make it heavy. However, this design grossly misfired
because it was easier for the higher body to rotate it-
self around the shaft than to make four wheels rotate
over the ground. Once again we were at a loss for
another motor which could have been used to build a
hydraulic system to ease the turning motion.

Finally we came upon the current design: sim-
ple but effective. However, we faced some prob-
lems here too. But one-by-one we got rid of most
of them. The first problem was making the robot go
in a straight line. That was solved by using long axles

3



that went into the center of the body and through
2 bricks at least. This prevented lateral movement
of the axles. The straight-moving problem was also
solved by keeping the body as narrow as possible,
curtailing drag in any one direction. Moreover, ev-
ery lego part on one side was placed at exactly the
same spot on the other side, to maintain weight bal-
ance(exactly like weight-balancing is done in wheels
on cars). By this time, the robot was performing
fairly well, except for a few random quirks during
turns. After several hours we understood what could
be a probable reason for this. We added a Wait(200
msec) statement in our programs after every task
(goFwd and turn). This allowed the motors to come
to the correct electronic potential for the next ma-
neuver. However, there was still some quirkiness in
the turns. This we figured to be from the rubber ring
on the rear-wheel. When the robot turned the front
wheels moved and the rear-wheel simply dragged
along the ground. This led to a lot of friction from
the rear-end of the robot’s body. So, we removed the
ring and the turns were considerably improved.

Apart from the hardware issues there were several
software problems that we encountered. We initially
wanted to develop the code for this project using le-
gOS running on a Linux machine. We made sev-
eral attempts to compile the necessary legOS tools
for USB transfer, but eventually gave it up due to
compilation problems. After that we tried installing
the same tools using CygWin on Windows XP and
once again faced compilation problems, however,
this time in the legOS source code itself. Then we
began RCX Brick Language but had to give it up very
soon, because it was simply not powerful enough and
neither was it comfortable enough for us to code in.
It does not support structural programming. Finally
we settled with NQC and the BricX NQC Develop-
ment Environment which we found to be extremely
conducive towards efficient coding.

The biggest problem in both dead-reckoning and
time-based navigation is that errors keep on accu-
mulating. If the robot were to mess up on the first
turn (say, by 5 degrees), there is no saying how far
it could go away from the finish point even if all the
other turns are perfect.

4 Conclusion

These methods suffer from lack of goal specification.
The robot does not have a goal to achieve, except to
follow the path as best as it can. The path has been
pre coded into the robot. It cannot generate its own
path, in case of a stochastic environment for exam-
ple. The introduction of a random variable in the
environment that changes the path parameters ren-
ders the robot useless. A navigation method that al-
lows the robot to identify/specify a goal would work
much better. An example of such a method is Po-
tential Fields. Once the goal has been specified the
robot can generate its own path to the goal.

Another ”roadblock” in these methods is obstacle
avoidance. If a robot, following either of these navi-
gation techniques, was to encounter a random obsta-
cle then it would certainly mess up the hard coded
values. For example, if a robot running on time-
based navigation were to get stuck in a rut for 2 sec-
onds and then got out and continued on its original
path, then it would certainly fall short of the final
destination by the distance travelled in unit time * 2
(taking an optimistic estimate). Once again potential
fields will be able to come up with a better solution
to such situations. The robot can still carry on its job,
delayed by 2 seconds, but still able to reach the goal.

4


