

Monte Carlo Localization using Dynamically Expanding Occupancy Grids

Karan M. Gupta

Introduction

Agenda

- Occupancy Grids
- Sonar Sensor Model
- Dynamically Expanding Occupancy Grids
- Monte Carlo Localization
- Monte Carlo Localization with DEOGs

- An intelligent robot is a mechanical creature which can function autonomously.
- Intelligent the robot does not do things in a mindless, repetitive way.
- Function autonomously the robot can operate in a self-contained manner, under reasonable conditions, without interference by a human operator.

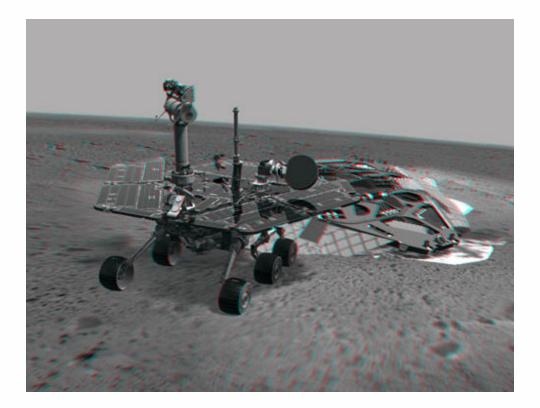
Introduction

• Robots in Museums

Introduction

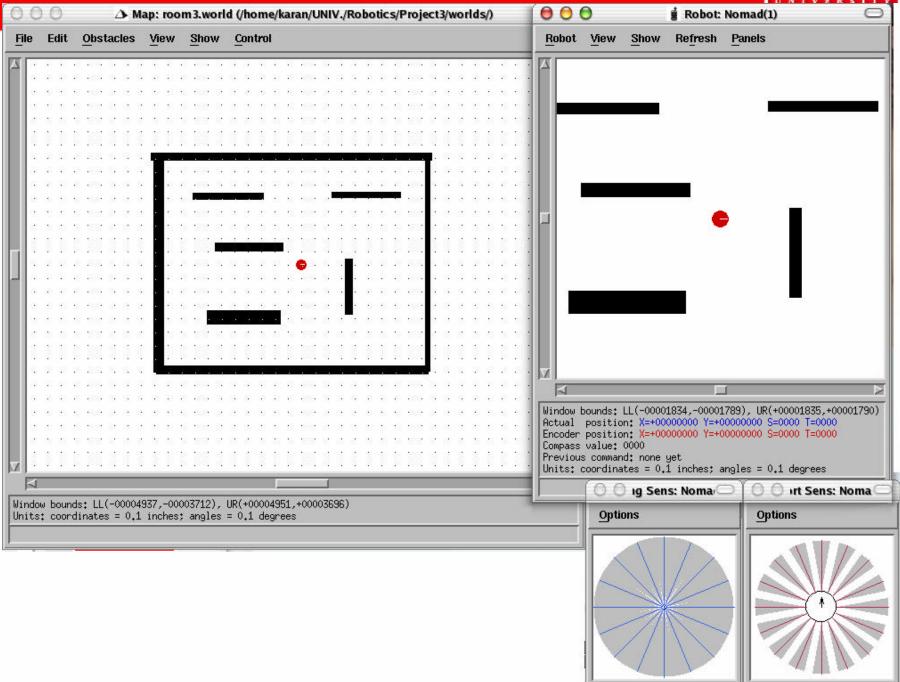
Personal Robots

• Robots in Space



• The problem of Navigation:

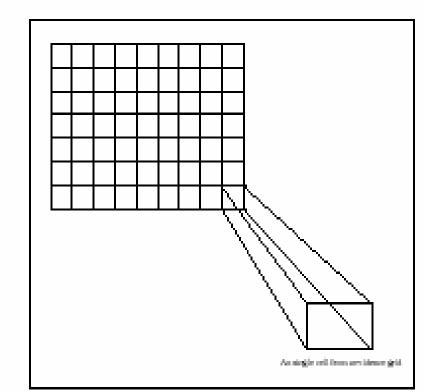
- Where am I going?
- What's the best way there?
- Where have I been?
- Where am I?
- How am I going to get there?



- Originally proposed by Moravec and Elfes: based on ultrasonic range measurements.
- A tool to construct an internal model of *static* environments based on sensor data.
- Creates map incrementally using belief values
- Can be directly applied to localization, path planning and navigation
- The environment to be mapped is divided into regions.
- Each grid cell is an *element* and represents an area of the environment.

Occupancy Grids

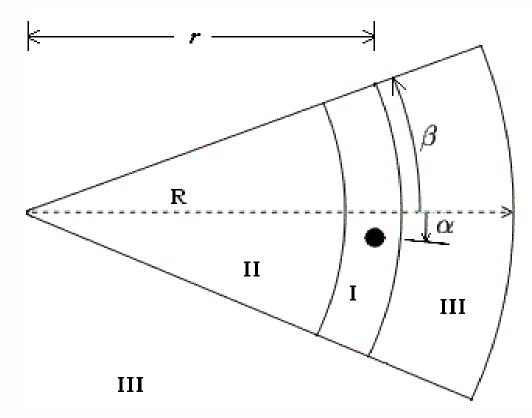
- Two-dimensional grid of cells
- Each cell represents a small discrete region of the world
- Each cell contains a value that indicates if the cell (and corresponding region in the environment) is either occupied or empty
- Pros
 - Simple
 - Accurate
- Cons
 - Require fixed-size environment: difficult to update if size of mapped area changes.



Region I: The sonar reading indicates a reflection from an object lying in this region. So this region is *probably* occupied.

Region II: No reading was returned from anything in this region. So this is the area that is *probably* empty.

Region III: The reading has been returned by Region II, so this is the area that is *undetected* by current sonar reading.



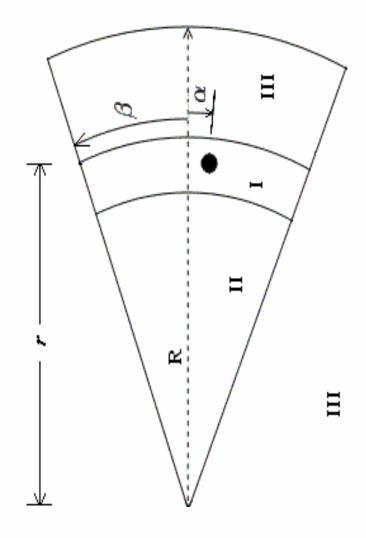
Sonar Sensor Model

Region I:

$$P(Occ) = \frac{\frac{R-r}{R} + \frac{b-a}{b}}{2} \times MaxOcc$$

Region II:

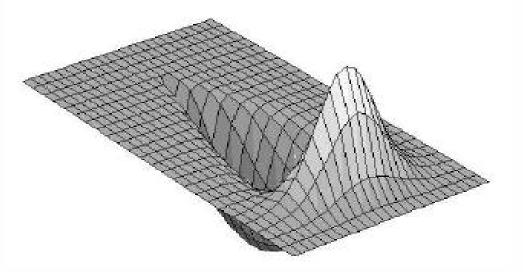
$$P(Emp) = \frac{\frac{R-r}{R} + \frac{b-a}{b}}{2}$$



Sonar Sensor Model

• Why Probabilistic Mapping?

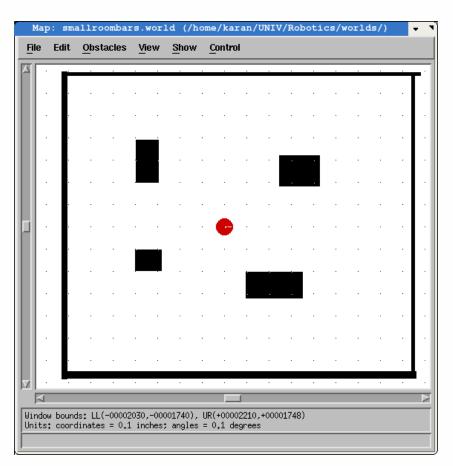
- Noise in commands and sensors
- Commands are not executed exactly (eg. Slippage leads to odometry errors)
- Sonars have several error issues (eg. cross-talk, foreshortening, specular reflection)

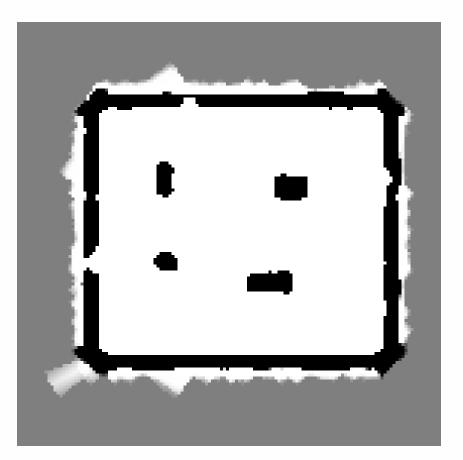


Occupancy Grids

Given Map

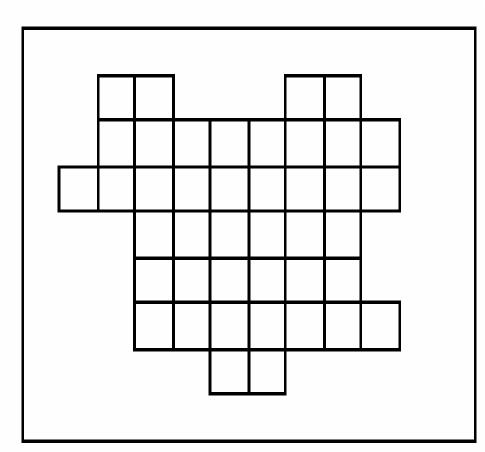
Created Map





Dynamically Expanding Occupancy Grids

- Variable-sized maps
- Ability to increase size of map, if new areas are added to the environment
- As robot explores, new cells are added
- Global map is stored outside the RAM in a Centralized Storage System
- Implemented using a Centralized Storage System



- Best (the only?) solution for mapping changing environments.
- Saves RAM
- Other useful information can be stored in the map
- More complicated to program than regular occupancy grids

- To navigate reliably, a mobile robot must know where it is.
- Robot's pose:
 - X = (location, orientation) = [x, y, ?]
- Mobile robot localization: the problem of estimating a robot's pose relative to its environment.
- "the most fundamental problem to providing a mobile robot with autonomous capabilities" – IEEE Transactions on Robotics and Automation.

• Three Flavors:

- Position tracking
 - » Robot knows its initial pose.
 - » As the robot moves, its pose changes.
 - » The problem is to compensate small, incremental errors in a robot's odometry (x, y, ?).
- Global localization problem
 - » Robot does not know its initial pose.
 - » The problem is to look at the surroundings and make multiple distinct hypotheses about its location.
 - » More challenging problem than Position Tracking.
- Kidnapped robot problem
 - » A well-localized robot is teleported to some other place without being told!
 - » Tests robot's ability to recover from catastrophic localization failures.

• Remember: The Navigation Problem

- Where am I going?
- What's the best way there? ----- Path Planning
- Where have I been? ----- Mapping
- Where am I? _____ Localization

Global Localization

- Enables robot to make use of existing maps, which allows it to plan and navigate reliably in complex environments.
- Position Tracking (Local Tracking)
 - Useful for efficient navigation and local manipulation tasks.

The Concept:

□Compare small local occupancy grid with stored global occupancy grid.

□Best fit pose is correct pose.

Probabilistic

- 1. Start with a uniform distribution of possible poses (x, y, Q)
- 2. Compute the probability of each pose given current sensor data and a map
- 3. Normalize probabilities
 - Throw out low probability points

Bayesian Approach

- We want to estimate pose of robot at k, given knowledge about the initial state and all movements Z^k up to current time.
- k = current time-step

•
$$Z^k = \{z_k, i = 1...k\}$$

- $\mathbf{x} = [\mathbf{x}, \mathbf{y}, ?]^{T}$ the current state of the robot
- Find the posterior density $= p(\mathbf{x}_k/Z^k) = \text{probability}$ of being in **x** at time k, if Z^k takes place.
- To localize the robot we need to recursively compute $p(\mathbf{x}_k/Z^k)$ at each time-step.

Bayesian Approach

- Two phases to compute $p(\mathbf{x}_k | Z^k)$:
- Prediction Phase:
 - Predict current position using only the history of the robot's movements.

$$p(\mathbf{x}_{k}/Z^{k-1}) = p(\mathbf{x}_{k}/\mathbf{x}_{k-1}, \mathbf{u}_{k-1}) p(\mathbf{x}_{k-1}/Z^{k-1}) d\mathbf{x}_{k-1}$$

• Update Phase:

 Incorporate information from sensors (compare what is observed to what is on the map).

$$p(\mathbf{x}_{k} | Z^{k}) = p(\mathbf{z}_{k} | \mathbf{x}_{k}) p(\mathbf{x}_{k} | Z^{k-1})$$

$$p(\mathbf{z}_{k} | Z^{k-1})$$

- Repeat the process for every time-step
- Use an estimate function: maximum or mean etc. to get the current position.

- Represent the posterior density p(x_k/Z^k) by a set of N random samples (*particles*) that are drawn from it.
- Set of particles = $S_k = \{s_k^i; i = 1...\}$
- Density is reconstructed from the samples using an estimator, e.g. histogram.
- New localization goal:
 - Recursively compute at each time-step k, the set of samples S^k that is drawn from $p(\mathbf{x}_k/Z^k)$.

• Prediction Phase:

- Start from set of particles S_{k-1} computed in previous iteration; apply motion model to each particle s_{k-1}^{i} by sampling from the density $p(\mathbf{x}_{k}/\mathbf{x}_{k-1}, \mathbf{u}_{k-1})$:

for each particle s_{k-1}^{i} : draw one sample s_{k}^{i} from $p(\mathbf{x}_{k} | s_{k-1}^{i}, \mathbf{u}_{k-1}^{i})$

- We have a new set S'_k that approximates a random sample from the predictive density $p(\mathbf{x}_k/Z^{k-1})$.
- The prime in S'_k indicates that we have not yet applied any sensor readings at time k.

• Update Phase:

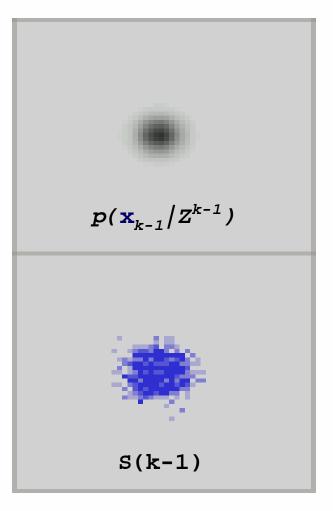
- We take sensor readings \mathbf{z}_k into account.
- Weight each sample in S'_k by a weight which is the likelihood of s'_k^i given \mathbf{z}_k^i .

- Weight =
$$m_k^i = p(\mathbf{Z}_k / s'_k^i)$$

- Obtain S_k by resampling from this weighted set:

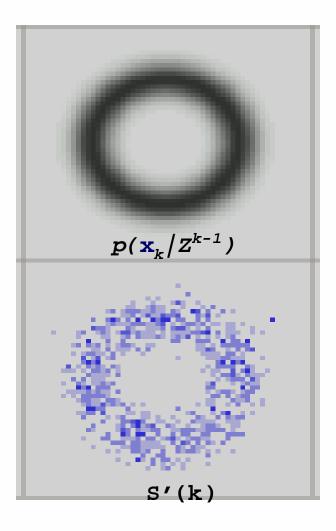
for j = 1..N: draw one S_k sample s_k^j from $\{s_k^i, m_k^i\}$

- This resampling selects with higher probability samples s'ⁱ_k that have a high likelihood associated with them.
- The new set S_k approximates a random sample from $p(\mathbf{x}_k/Z^k)$.

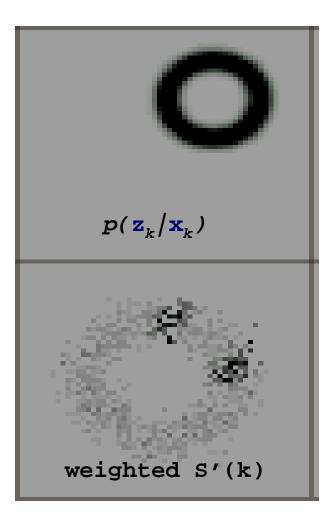


- Initially, the location of the robot is known, but the orientation is unknown.
- The cloud of particles S_{k-1} represents our uncertainty about the robot's position.

TEXASTECH Computer Science

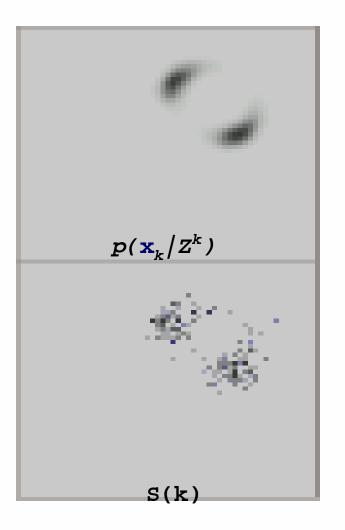


- Robot has moved 1 meter since last time-step.
- We deduce that robot is now on a circle of 1m radius around the previous location.
- Our belief state changes to reflect this.
- At this point we have applied only the motion model.

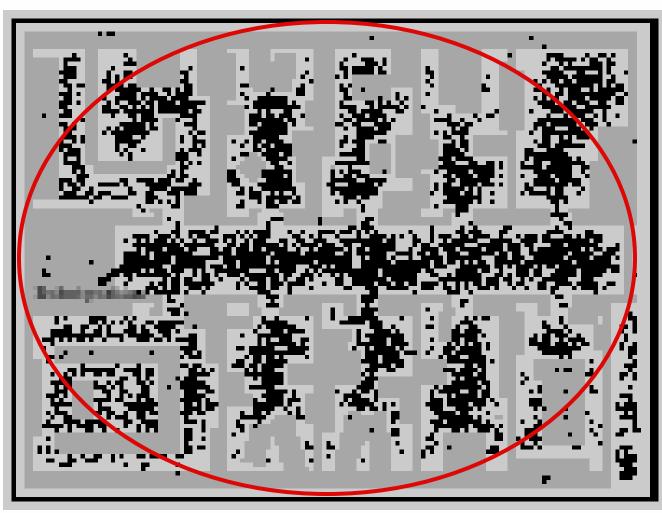


- We now take sensor readings into account.
- A landmark is observed
 0.5m away somewhere in the top-right corner.
- We apply weighting to the samples to reflect that the robot is more likely to be in the topright corner.

TEXASTECH Computer Science



- The weighted set is resampled to give the new set of points where the robot is most likely to be.
- This new set is the starting point for the next iteration.

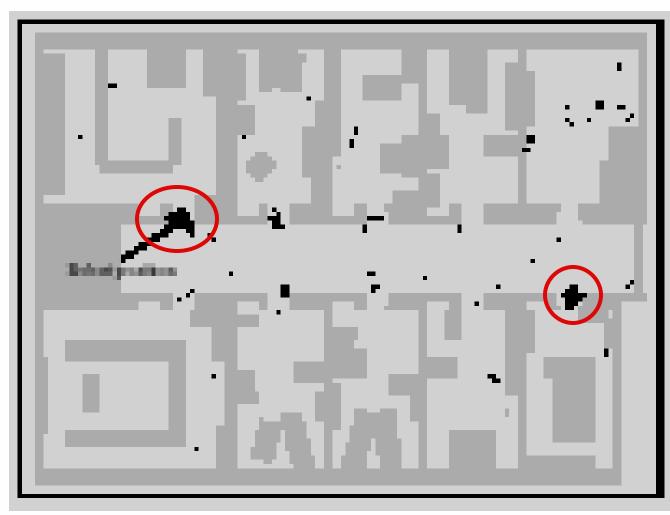


<u>STEP 1</u>

Global Localization

Robot does not know initial pose – every possible pose has a certain probability of being the correct location of the robot.

Monte Carlo Localization

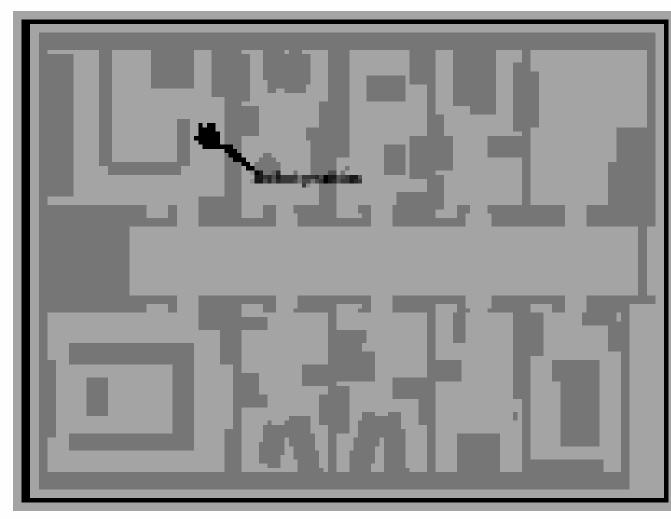


<u>STEP 2</u>

Global Localization Robot observes the world (sensor readings) – the problem is reduced to choosing between two most likely poses – map has similar symmetry at both locations.

Some scattered samples survive here and there.

Monte Carlo Localization



<u>STEP 3</u>

Global Localization

The robot moves a little more and is able to observe (sensor readings) some unique symmetry which is not at another point on the map.

<u>Robot is globally</u> localized.

Properties

- Combined the advantages of grid-based Markov localization with the efficiency and accuracy of Kalman filter based techniques.
- Since the MCL-method is able to represent probability densities over the robot's entire state space, it is able to deal with ambiguities and thus can *globally localize* the robot.
- By concentrating the computational resources (*the samples*) on only the relevant parts of the state space, MCL-method can efficiently and accurately estimate the *position* of the robot.
- Excellent in mapped environments
- Need non-symmetric geometries

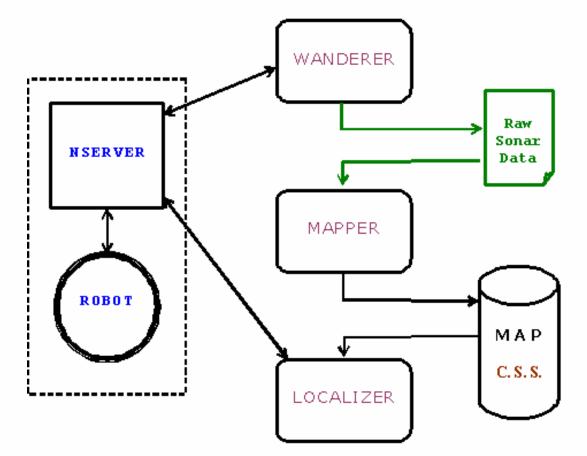
Monte Carlo Localization + DEOGs Implementation

<u>Wanderer</u>: explore the environment and collect information

<u>Mapper</u>: process the data collected by the wanderer

Localizer: use the map to pinpoint the location of the robot when requested

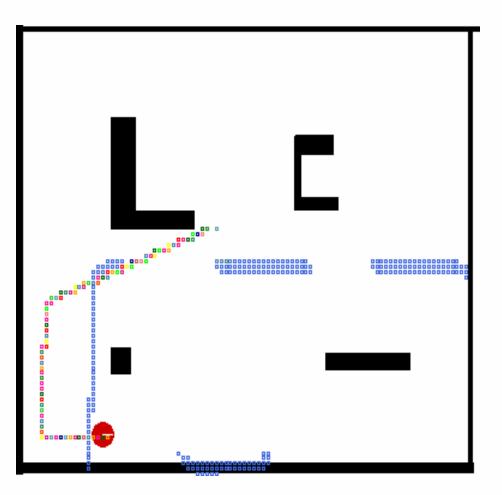
<u>Central Storage System</u> (<u>CSS</u>): stores the map, allows for expansion of the map, quick retrieval of map data



Ί	EXASTECH				
	UNIVERSITY				
	Computer Science				

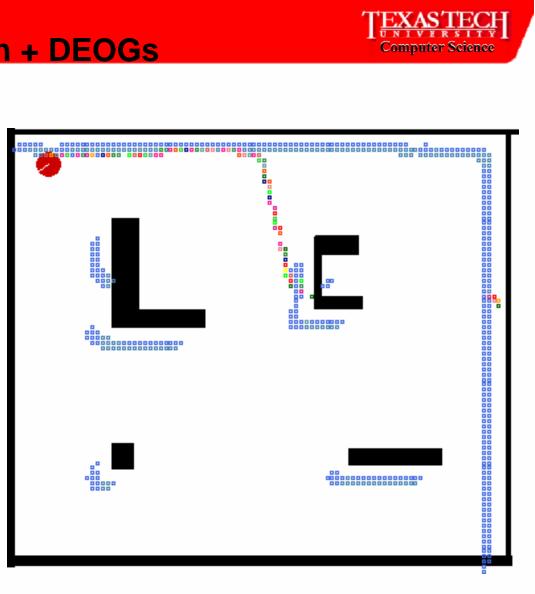
	Mean Error	S. Dev.
X	8.59055	1.1919
Y	5.22283	3.49318
Theta	0.0	0.0

x, y are measured in inches, theta is in degrees



	Mean Error	S. Dev.
X	3.82836	3.44103
Y	8.15522	1.01169
Theta	0.0	0.0

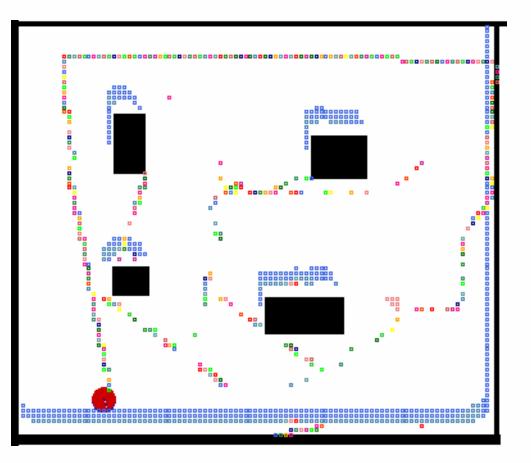
x, y are measured in inches, theta is in degrees



The robot was kidnapped several times, MCL was finally able to localize onto the correct position of the robot

	Mean Error	S. Dev.
X	7.73698	1.57169
Y	3.57057	2.8353
Theta	0.0	0.0

x, y are measured in inches, theta is in degrees



• Conclusions:

- We have seen that a Monte Carlo Localization method works successfully with Dynamically Expanding Occupancy Grids. This virtually removes any limit on the environment size for nearly any robot system.
- Now that Mapping and Localization has been tried and tested on a DEOG system, once Path-planning is also tested, a complete DEOG Robotic System can be built, that will work on an environment of any size.

- Monte Carlo Localization for Mobile Robots -- F. Dellaert, D. Fox, W. Burgard, S. Thrun
- Monte Carlo Localization: Efficient Position Estimation for Mobile Robots -- *F. Dellaert, D. Fox, W. Burgard, S. Thrun*
- Robust Monte Carlo Localization for Mobile Robots -- F. Dellaert, D. Fox, W. Burgard, S. Thrun
- Introduction to AI Robotics -- *Robin Murphy*
- Dynamically Expanding Occupancy Grids -- Bharani K. Ellore
- Multi-agent mapping using dynamic allocation utilizing a storage system -- Laura Barnes, Richard Garcia, Todd Quasny, Dr. Larry Pyeatt
- **Robotic Mapping: A survey -- Sebastian Thrun**
- CYE <u>www.prorobotics.com</u>
- The Honda Asimo <u>http://asimo.honda.com</u>
- Mars Rover <u>http://marsrovers.jpl.nasa.gov/home/</u>

