
1

Monte Carlo Localization
using

Dynamically Expanding Occupancy
Grids

Karan M. Gupta

2

§ Introduction
§ Occupancy Grids
§ Sonar Sensor Model
§ Dynamically Expanding Occupancy Grids
§ Monte Carlo Localization
§ Monte Carlo Localization with DEOGs

Agenda

3

Introduction

• An intelligent robot is a mechanical creature which
can function autonomously.
qIntelligent – the robot does not do things in a

mindless, repetitive way.
qFunction autonomously – the robot can operate in a

self-contained manner, under reasonable conditions,
without interference by a human operator.

4

Introduction

• Robots in Museums

5

Introduction

• Personal Robots

6

Introduction

• Robots in Space

7

Introduction

• The problem of Navigation:
– Where am I going?
– What’s the best way there?
– Where have I been?
– Where am I?
– How am I going to get there?

8

9

Occupancy Grids

• Originally proposed by Moravec and Elfes: based on
ultrasonic range measurements.

• A tool to construct an internal model of static
environments based on sensor data.

• Creates map incrementally using belief values
• Can be directly applied to localization, path planning

and navigation
• The environment to be mapped is divided into

regions.
• Each grid cell is an element and represents an area

of the environment.

10

Occupancy Grids

• Two-dimensional grid of cells
• Each cell represents a small discrete

region of the world
• Each cell contains a value that

indicates if the cell (and
corresponding region in the
environment) is either occupied or
empty

• Pros
– Simple
– Accurate

• Cons
– Require fixed-size environment:

difficult to update if size of mapped area
changes.

11

Sonar Sensor Model

Region I: The sonar reading
indicates a reflection from an
object lying in this region. So
this region is probably
occupied.

Region II: No reading was
returned from anything in this
region. So this is the area that
is probably empty.

Region III: The reading has
been returned by Region II, so
this is the area that is
undetected by current sonar
reading.

12

Sonar Sensor Model

 MaxOcc R
rR

OccP x
2

)(β
αβ −

+
−

=

2
)(β

αβ −
+

−

= R
rR

EmpP

Region I:

Region II:

13

Sonar Sensor Model

• Why Probabilistic Mapping?
– Noise in commands and

sensors
– Commands are not executed

exactly (eg. Slippage leads to
odometry errors)

– Sonars have several error
issues (eg. cross-talk,
foreshortening, specular
reflection)

14

Occupancy Grids

Given Map Created Map

15

Dynamically Expanding Occupancy Grids

• Variable-sized maps
• Ability to increase size of

map, if new areas are added
to the environment

• As robot explores, new cells
are added

• Global map is stored outside
the RAM in a Centralized
Storage System

• Implemented using a
Centralized Storage System

16

Dynamically Expanding Occupancy Grids

§ Best (the only?) solution for mapping changing
environments.
§ Saves RAM
§ Other useful information can be stored in the map
§ More complicated to program than regular

occupancy grids

17

Monte Carlo Localization

• To navigate reliably, a mobile robot must know where
it is.

• Robot’s pose:
X = (location, orientation) = [x, y, ?]

• Mobile robot localization: the problem of estimating a
robot’s pose relative to its environment.

• “the most fundamental problem to providing a
mobile robot with autonomous capabilities” – IEEE
Transactions on Robotics and Automation.

18

Monte Carlo Localization

• Three Flavors:
– Position tracking

» Robot knows its initial pose.
» As the robot moves, its pose changes.
» The problem is to compensate small, incremental errors in a

robot’s odometry (x, y, ?).
– Global localization problem

» Robot does not know its initial pose.
» The problem is to look at the surroundings and make multiple

distinct hypotheses about its location.
» More challenging problem than Position Tracking.

– Kidnapped robot problem
» A well-localized robot is teleported to some other place without

being told!
» Tests robot’s ability to recover from catastrophic localization

failures.

19

• Remember: The Navigation Problem
– Where am I going?
– What’s the best way there? Path Planning
– Where have I been? Mapping
– Where am I? Localization

• Global Localization
– Enables robot to make use of existing maps, which allows it to plan

and navigate reliably in complex environments.

• Position Tracking (Local Tracking)
– Useful for efficient navigation and local manipulation tasks.

Monte Carlo Localization

20

Monte Carlo Localization

The Concept:
qCompare small local occupancy grid with stored

global occupancy grid.
qBest fit pose is correct pose.

Probabilistic
§ 1. Start with a uniform distribution of possible poses (x, y, Θ)
§ 2. Compute the probability of each pose given current sensor data and a

map
§ 3. Normalize probabilities

§ Throw out low probability points

21

Monte Carlo Localization

Bayesian Approach
• We want to estimate pose of robot at k, given

knowledge about the initial state and all movements
Zk up to current time.

• k = current time-step
• Zk = {zk, i = 1..k}
• x = [x, y, ?]T the current state of the robot
• Find the posterior density = p(xk|Z

k) = probability
of being in x at time k, if Zk takes place.

• To localize the robot we need to recursively compute
p(xk|Z

k) at each time-step.

22

Monte Carlo Localization

Bayesian Approach
• Two phases to compute p(xk|Z

k):
• Prediction Phase:

– Predict current position using only the history of the robot’s
movements.
p(xk|Z

k-1) =) p(xk|xk-1, uk-1) p(xk-1|Z
k-1) dxk-1

• Update Phase:
– Incorporate information from sensors (compare what is observed

to what is on the map).
p(xk|Z

k) = p(zk|xk) p(xk|Z
k-1)

p(zk|Z
k-1)

• Repeat the process for every time-step
• Use an estimate function: maximum or mean etc. to

get the current position.

23

Monte Carlo Localization

• Represent the posterior density p(xk|Z
k) by a set of

N random samples (particles) that are drawn from it.
• Set of particles = Sk = {sik; i = 1..N}
• Density is reconstructed from the samples using an

estimator, e.g. histogram.
• New localization goal:

– Recursively compute at each time-step k, the set of samples Sk that
is drawn from p(xk|Z

k).

24

Monte Carlo Localization

• Prediction Phase:
– Start from set of particles Sk-1 computed in previous iteration;

apply motion model to each particle sik-1 by sampling from the
density p(xk|xk-1, uk-1):

for each particle sik-1 :
draw one sample s’ik from p(xk|s

i
k-1, uk-1)

– We have a new set S’k that approximates a random sample from
the predictive density p(xk|Z

k-1).
– The prime in S’k indicates that we have not yet applied any sensor

readings at time k.

25

Monte Carlo Localization

• Update Phase:
– We take sensor readings zk into account.

– Weight each sample in S’k by a weight which is the likelihood of
s’ik given zk .

– Weight = mik = p(zk|s’ik)
– Obtain Sk by resampling from this weighted set:

for j = 1..N:
draw one Sk sample sjk from {s’ik, m

i
k}

– This resampling selects with higher probability samples s’ik that
have a high likelihood associated with them.

– The new set Sk approximates a random sample from p(xk|Z
k).

26

Monte Carlo Localization
A Graphical Example

• Initially, the location of
the robot is known, but
the orientation is
unknown.

• The cloud of particles Sk-1
represents our
uncertainty about the
robot’s position.

p(xk-1|Z
k-1)

S(k-1)

27

Monte Carlo Localization
A Graphical Example

• Robot has moved 1 meter
since last time-step.

• We deduce that robot is
now on a circle of 1m
radius around the
previous location.

• Our belief state changes
to reflect this.

• At this point we have
applied only the motion
model.

p(xk|Z
k-1)

S’(k)

28

Monte Carlo Localization
A Graphical Example

• We now take sensor
readings into account.

• A landmark is observed
0.5m away somewhere in
the top-right corner.

• We apply weighting to
the samples to reflect
that the robot is more
likely to be in the top-
right corner.

p(zk|xk)

weighted S’(k)

29

Monte Carlo Localization
A Graphical Example

• The weighted set is
resampled to give the
new set of points where
the robot is most likely to
be.

• This new set is the
starting point for the
next iteration.

p(xk|Z
k)

S(k)

30

Monte Carlo Localization

STEP 1

Global Localization

Robot does not know
initial pose – every
possible pose has a
certain probability of
being the correct
location of the robot.

31

Monte Carlo Localization

STEP 2

Global Localization
Robot observes the
world (sensor
readings) – the
problem is reduced
to choosing between
two most likely
poses – map has
similar symmetry at
both locations.

Some scattered
samples survive here
and there.

32

Monte Carlo Localization

STEP 3

Global Localization

The robot moves a
little more and is
able to observe
(sensor readings)
some unique
symmetry which is
not at another point
on the map.

Robot is globally
localized.

33

Monte Carlo Localization

• Properties
– Combined the advantages of grid-based Markov localization with

the efficiency and accuracy of Kalman filter based techniques.
– Since the MCL-method is able to represent probability densities

over the robot’s entire state space, it is able to deal with
ambiguities and thus can globally localize the robot.

– By concentrating the computational resources (the samples) on
only the relevant parts of the state space, MCL-method can
efficiently and accurately estimate the position of the robot.

§ Excellent in mapped environments
§ Need non-symmetric geometries

34

Monte Carlo Localization + DEOGs
Implementation

Wanderer: explore the
environment and collect
information

Mapper: process the data
collected by the wanderer

Localizer: use the map to
pinpoint the location of
the robot when requested

Central Storage System
(CSS): stores the map,
allows for expansion of
the map, quick retrieval of
map data

35

Monte Carlo Localization + DEOGs

3.493185.22283Y

0.00.0Theta

1.19198.59055 X

S. Dev.Mean
Error

x, y are measured in inches,
theta is in degrees

36

Monte Carlo Localization + DEOGs

1.011698.15522Y

0.00.0Theta

3.441033.82836X

S. Dev.Mean
Error

x, y are measured in inches,
theta is in degrees

37

Monte Carlo Localization + DEOGs

2.83533.57057Y

0.00.0Theta

1.571697.73698X

S. Dev.Mean
Error

x, y are measured in inches,
theta is in degrees

The robot was kidnapped
several times, MCL was
finally able to localize
onto the correct position
of the robot

38

Monte Carlo Localization + DEOGs

• Conclusions:
– We have seen that a Monte Carlo Localization method works

successfully with Dynamically Expanding Occupancy Grids. This
virtually removes any limit on the environment size for nearly any
robot system.

– Now that Mapping and Localization has been tried and tested on a
DEOG system, once Path-planning is also tested, a complete DEOG
Robotic System can be built, that will work on an environment of
any size.

39

References

Monte Carlo Localization for Mobile Robots -- F. Dellaert, D. Fox, W. Burgard, S. Thrun
Monte Carlo Localization: Efficient Position Estimation for Mobile Robots -- F. Dellaert, D. Fox, W.
Burgard, S. Thrun
Robust Monte Carlo Localization for Mobile Robots -- F. Dellaert, D. Fox, W. Burgard, S. Thrun
Introduction to AI Robotics -- Robin Murphy
Dynamically Expanding Occupancy Grids -- Bharani K. Ellore
Multi-agent mapping using dynamic allocation utilizing a storage system -- Laura Barnes, Richard
Garcia, Todd Quasny, Dr. Larry Pyeatt
Robotic Mapping: A survey -- Sebastian Thrun

CYE www.prorobotics.com
The Honda Asimo http://asimo.honda.com
Mars Rover http://marsrovers.jpl.nasa.gov/home/

