
1

Monte Carlo Localization
using

Dynamically Expanding Occupancy 
Grids

Karan M. Gupta



2

§ Introduction
§ Occupancy Grids
§ Sonar Sensor Model
§ Dynamically Expanding Occupancy Grids
§ Monte Carlo Localization
§ Monte Carlo Localization with DEOGs

Agenda



3

Introduction

• An intelligent robot is a mechanical creature which 
can function autonomously.

qIntelligent – the robot does not do things in a 
mindless, repetitive way.

qFunction autonomously – the robot can operate in a 
self-contained manner, under reasonable conditions, 
without interference by a human operator.
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Introduction

• Robots in Museums
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Introduction

• Personal Robots
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Introduction

• Robots in Space
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Introduction

• The problem of Navigation:
– Where am I going?
– What’s the best way there?
– Where have I been?
– Where am I?
– How am I going to get there?
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Occupancy Grids

• Originally proposed by Moravec and Elfes: based on 
ultrasonic range measurements.

• A tool to construct an internal model of static
environments based on sensor data.

• Creates map incrementally using belief values
• Can be directly applied to localization, path planning 

and navigation
• The environment to be mapped is divided into 

regions.
• Each grid cell is an element and represents an area 

of the environment.
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Occupancy Grids

• Two-dimensional grid of cells
• Each cell represents a small discrete 

region of the world
• Each cell contains a value that 

indicates if the cell (and 
corresponding region in the 
environment) is either occupied or 
empty

• Pros
– Simple
– Accurate

• Cons
– Require fixed-size environment:

difficult to update if size of mapped area 
changes.
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Sonar Sensor Model

Region I: The sonar reading 
indicates a reflection from an 
object lying in this region. So 
this region is probably
occupied.

Region II: No reading was 
returned from anything in this 
region. So this is the area that 
is probably empty.

Region III: The reading has 
been returned by Region II, so 
this is the area that is 
undetected by current sonar
reading.
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Sonar Sensor Model
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Sonar Sensor Model

• Why Probabilistic Mapping?
– Noise in commands and 

sensors
– Commands are not executed 

exactly (eg. Slippage leads to 
odometry errors)

– Sonars have several error 
issues (eg. cross-talk, 
foreshortening, specular
reflection)
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Occupancy Grids

Given Map Created Map
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Dynamically Expanding Occupancy Grids

• Variable-sized maps
• Ability to increase size of 

map, if new areas are added 
to the environment

• As robot explores, new cells 
are added

• Global map is stored outside 
the RAM in a Centralized 
Storage System

• Implemented using a 
Centralized Storage System
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Dynamically Expanding Occupancy Grids

§ Best (the only?) solution for mapping changing 
environments.

§ Saves RAM
§ Other useful information can be stored in the map
§ More complicated to program than regular 

occupancy grids
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Monte Carlo Localization

• To navigate reliably, a mobile robot must know where 
it is.

• Robot’s pose:
X = (location, orientation) = [x, y, ?]

• Mobile robot localization: the problem of estimating a 
robot’s pose relative to its environment.

• “the most fundamental problem to providing a 
mobile robot with autonomous capabilities” – IEEE 
Transactions on Robotics and Automation.
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Monte Carlo Localization

• Three Flavors:
– Position tracking

» Robot knows its initial pose.
» As the robot moves, its pose changes.
» The problem is to compensate small, incremental errors in a 

robot’s odometry (x, y, ?).
– Global localization problem

» Robot does not know its initial pose.
» The problem is to look at the surroundings and make multiple 

distinct hypotheses about its location.
» More challenging problem than Position Tracking.

– Kidnapped robot problem
» A well-localized robot is teleported to some other place without 

being told!
» Tests robot’s ability to recover from catastrophic localization 

failures.
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• Remember: The Navigation Problem
– Where am I going?
– What’s the best way there? Path Planning
– Where have I been? Mapping
– Where am I? Localization

• Global Localization
– Enables robot to make use of existing maps, which allows it to plan 

and navigate reliably in complex environments.

• Position Tracking (Local Tracking)
– Useful for efficient navigation and local manipulation tasks.

Monte Carlo Localization
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Monte Carlo Localization

The Concept:
qCompare small local occupancy grid with stored 

global occupancy grid. 
qBest fit pose is correct pose.

Probabilistic
§ 1. Start with a uniform distribution of possible poses (x, y, Θ)
§ 2. Compute the probability of each pose given current sensor data and a 

map
§ 3. Normalize probabilities

§ Throw out low probability points



21

Monte Carlo Localization

Bayesian Approach
• We want to estimate pose of robot at k, given 

knowledge about the initial state and all movements 
Zk up to current time. 

• k = current time-step
• Zk = {zk, i = 1..k}
• x = [x, y, ?]T the current state of the robot
• Find the posterior density  = p(xk|Z

k) = probability 
of being in x at time k, if Zk takes place.

• To localize the robot we need to recursively compute 
p(xk|Z

k) at each time-step.
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Monte Carlo Localization

Bayesian Approach
• Two phases to compute p(xk|Z

k):
• Prediction Phase:

– Predict current position using only the history of the robot’s 
movements. 
p(xk|Z

k-1) = ) p(xk|xk-1, uk-1) p(xk-1|Z
k-1) dxk-1

• Update Phase:
– Incorporate information from sensors (compare what is observed 

to what is on the map).
p(xk|Z

k) = p(zk|xk) p(xk|Z
k-1)

p(zk|Z
k-1)

• Repeat the process for every time-step
• Use an estimate function: maximum or mean etc. to 

get the current position.
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Monte Carlo Localization

• Represent the posterior density p(xk|Z
k) by a set of 

N random samples (particles) that are drawn from it.
• Set of particles = Sk = {sik; i = 1..N}
• Density  is reconstructed from the samples using an 

estimator, e.g. histogram.
• New localization goal:

– Recursively compute at each time-step k, the set of samples Sk that 
is drawn from p(xk|Z

k).
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Monte Carlo Localization

• Prediction Phase:
– Start from set of particles Sk-1 computed in previous iteration; 

apply motion model to each particle sik-1 by sampling from the 
density p(xk|xk-1, uk-1):

for each particle sik-1 :
draw one sample s’ik from p(xk|s

i
k-1, uk-1)

– We have a new set S’k that approximates a random sample from 
the predictive density p(xk|Z

k-1).
– The prime in S’k indicates that we have not yet applied any sensor 

readings at time k.
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Monte Carlo Localization

• Update Phase:
– We take sensor readings zk into account.

– Weight each sample in S’k by a weight which is the likelihood of 
s’ik given zk .

– Weight = mik = p(zk|s’ik)
– Obtain Sk by resampling from this weighted set:

for j = 1..N:
draw one Sk sample sjk from {s’ik, m

i
k}

– This resampling selects with higher probability samples s’ik that 
have a high likelihood associated with them.

– The new set Sk approximates a random sample from p(xk|Z
k).
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Monte Carlo Localization
A Graphical Example

• Initially, the location of 
the robot is known, but 
the orientation is 
unknown.

• The cloud of particles Sk-1
represents our 
uncertainty about the 
robot’s position.

p(xk-1|Z
k-1)

S(k-1)
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Monte Carlo Localization
A Graphical Example

• Robot has moved 1 meter 
since last time-step.

• We deduce that robot is 
now on a circle of 1m 
radius around the 
previous location.

• Our belief state changes 
to reflect this.

• At this point we have 
applied only the motion 
model.

p(xk|Z
k-1)

S’(k)
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Monte Carlo Localization
A Graphical Example

• We now take sensor 
readings into account.

• A landmark is observed 
0.5m away somewhere in 
the top-right corner.

• We apply weighting to 
the samples to reflect 
that the robot is more 
likely to be in the top-
right corner.

p(zk|xk)

weighted S’(k)
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Monte Carlo Localization
A Graphical Example

• The weighted set is 
resampled to give the 
new set of points where 
the robot is most likely to 
be.

• This new set is the 
starting point for the 
next iteration.

p(xk|Z
k)

S(k)
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Monte Carlo Localization

STEP 1

Global Localization

Robot does not know 
initial pose – every 
possible pose has a 
certain probability of 
being the correct 
location of the robot.
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Monte Carlo Localization

STEP 2

Global Localization
Robot observes the 
world (sensor 
readings) – the 
problem is reduced 
to choosing between  
two most likely 
poses – map has 
similar symmetry at 
both locations.

Some scattered 
samples survive here 
and there.
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Monte Carlo Localization

STEP 3

Global Localization

The robot moves a 
little more and is 
able to observe 
(sensor readings) 
some unique 
symmetry which is 
not at another point 
on the map.

Robot is globally 
localized.
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Monte Carlo Localization

• Properties
– Combined the advantages of grid-based Markov localization with 

the efficiency and accuracy of Kalman filter based techniques.
– Since the MCL-method is able to represent probability densities 

over the robot’s entire state space, it is able to deal with 
ambiguities and thus can globally localize the robot.

– By concentrating the computational resources (the samples) on 
only the relevant parts of the state space, MCL-method can 
efficiently and accurately estimate the position of the robot.

§ Excellent in mapped environments
§ Need non-symmetric geometries
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Monte Carlo Localization + DEOGs
Implementation

Wanderer: explore the 
environment and collect 
information

Mapper: process the data 
collected by the wanderer

Localizer: use the map to 
pinpoint the location of 
the robot when requested

Central Storage System 
(CSS): stores the map, 
allows for expansion of 
the map, quick retrieval of 
map data
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Monte Carlo Localization + DEOGs

3.493185.22283Y

0.00.0Theta

1.19198.59055 X

S. Dev.Mean 
Error

x, y are measured in inches,
theta is in degrees
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Monte Carlo Localization + DEOGs

1.011698.15522Y

0.00.0Theta

3.441033.82836X

S. Dev.Mean 
Error

x, y are measured in inches,
theta is in degrees
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Monte Carlo Localization + DEOGs

2.83533.57057Y

0.00.0Theta

1.571697.73698X

S. Dev.Mean 
Error

x, y are measured in inches,
theta is in degrees

The robot was kidnapped 
several times, MCL was 
finally able to localize 
onto the correct position 
of the robot
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Monte Carlo Localization + DEOGs

• Conclusions:
– We have seen that a Monte Carlo Localization method works 

successfully with Dynamically Expanding Occupancy Grids. This 
virtually removes any limit on the environment size for nearly any 
robot system.

– Now that Mapping and Localization has been tried and tested on a
DEOG system, once Path-planning is also tested, a complete DEOG 
Robotic System can be built, that will work on an environment of
any size.
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